Posts

Our 25 Hours in Haiti

The alarm was set for 4:00 AM. It was going to be a long day.

The mission was to travel to Haiti to survey space for a new community kitchen. The existing kitchen feeds some 1,400 children each day their only meal, which most days is no more than beans and rice. They are the lucky ones. Many children in the area receive only “mud cookies,” which is exactly what you are imagining.

Several Atlanta-area churches joined together to build a new, bigger kitchen in Port au Prince that can feed as many as 10,000 people. They enlisted the help of LandAir Surveying and Paul Gresham, an architect who works with Chick-fil-a and a member of one of the involved churches, to create a base map for the master construction plan.

I made the trip to Haiti with Allen Nobles, president of Nobles Consulting Group in Tallahassee, Florida. We have been friends for many years and have worked together on projects all over the country – but nothing quite like this.

The plan was to scan the entire site consisting of an existing one-story school, an old building housing the existing kitchen, the future kitchen site, and a church and the campus walls around it. The existing kitchen has no running water and the sewer system is merely a pipe that goes through the wall to a creek out back. By Haitian standards, this is state of the art.

To further complicate matters, this is a particularly scary part of Port au Prince with a high crime rate. People are poor. Tourists have been kidnapped. Dysentery, yellow fever, malaria and cholera plague the area and the roads are full of potholes.

As we made our way through back roads crowded with cars and children, we finally arrived at the front gate of the school where the new kitchen will be built. Our van pulled into the tight driveway and the driver blew his horn, a sign for the guards to open the gate.

Once inside, we joined Paul, Pastor Vincent – the school’s headmaster – and a local architect assigned to help with the project.

Preparing to scan

Paul provided a general idea of what he needed for the design team. The school’s campus consists of a single story school building approximately 300-feet long divided into 10 classrooms. On one side of the campus is a large church that also serves as a meeting room.

In the center of the campus is a large building that is to be demolished. It houses a kitchen that is approximately 20-feet by 25-feet. The cooking equipment consists of some large bowls and pans used for both cooking and washing the dishes. The stove is simply six propane burners. This small kitchen serves 1,400 meals a day to the students and local children.

The goal was to produce a map of the campus and get enough information on the existing school so that a second floor could be added. Paul and his design team would prepare a master plan for future development, but their top priority was building a very large and modern kitchen capable of feeding 10,000 people daily.

When we decided to go on this trip, we knew we didn’t have a lot of time, so we built our equipment for lightness and mobility. It’s not easy to get all of the survey equipment you need into to backpacks and two small carry-on bags. You have to be creative and decide what you want, but take what you need.

Among that equipment was a Focus scanner and supporting equipment along with a small level, rulers, and a miniature tripod that folded up to 23-inches but expanded to about 65-inches. Allen also brought along some very handy paper targets with numbers and lead weights to hold them and a series of globes that cost around $5 each.

We had a two-minute project meeting with the architect and then taped-up 8-10 paper targets in the main area and started scanning with the Focus. Then we taped about 60 targets around the campus on the sides of the buildings, constantly moving the globes ahead of us and using the lead targets.

Once we had completed scanning the campus and buildings, we moved on to the roof.

View from the roof!

When you’re working inside the campus gates, you forget where you are. But when you are on the roof, it all comes back. Not 15-feet away, we could see a small alley filled with families and kids. Even though they were too poor to eat, they would look up at us and smile and laugh. They were very excited to see something different.

From the roof, there is also a clear view of the “river,” which is nothing more than the local sewer system run-off covered in garbage. Hogs, goats, and cows graze alongside it.

The trip also included a trek to New Life Children’s Home, an orphanage and oasis owned by a local woman named Miriam who had once found Pastor Vincent as a very small child, almost dead from starvation. She took him in and nurtured him back to health. He ended up going to college in Tennessee and returning to Haiti to start several schools and orphanages there.

The orphanage, which houses close to 100 children, has running water, bathrooms, electricity, clean bedrooms and many of the comforts of home. The electricity is run by generators and turned off at night to save energy.

After dinner, Paul asked us to look at a few of the buildings on campus to see if they could be scanned and documented. We did a quick assessment of what could be done given their tight timeframe and decided to scan one of the bigger, more complicated buildings first thing the next morning.

When all of the scans of the buildings and school were complete, Pastor Vince took us on a tour of the impoverished surrounding area known as Destiny Village.

I took a lot of pictures and some video on my iPhone, but after a while, you feel bad documenting the poverty surrounding you and realize how little they have, need or want.

What my household throws away in a week would feed two or three families.

Headed home

After clearing customs at the airport and heading back to Miami, Allen and I went our separate ways. But the 25 hours we spent in Haiti will stay with us forever.

I’m glad we were able to use scanning technology in Haiti as there is no better, faster or more precise way to document data. But the scanning was the easy part.

The hardest part was seeing how these people live and the difference between our lives and theirs. We know we can’t save all kids displaced by earthquakes, hurricanes, and dishonest dictators and government corruption in Haiti. But if the kitchen gets built and the kids get fed, we may have helped to save a few. That was worth 25 hours in Haiti.

Tate Jones and Allen Nobles have been friends in the surveying business since 2007. Tate is the president and owner of LandAir Surveying Company, based in Roswell, Georgia. Allen is president and owner of Nobles Consulting Group, based in Tallahassee, Florida. Together, they have worked on projects all over America and generally share resources and technical expertise. To learn more, visit www.landairsurveying.com and www.ncginc.com.

 

What is the best use of laser scanning and point cloud technology?

Laser scanning technology is revolutionary in its accuracy and efficiency, but before you decide on a laser scan for your next job, there are several things you should consider.

Before each project, we ask every client the same question: “How do you plan to use the data?” Generally speaking, the more valuable and complex the project, the greater the need for precision data, and the greater likelihood of multiple trips to the jobsite, the more value laser scanning will provide.

For example, laser scans become very cost effective when you are documenting a complex environment such as complex piping, above ceiling elements, complicated architecture, or something you cannot physically touch like a tower, structural beams or tall buildings.

It is also ideal when you are documenting a pipe room, conveyor system or manufacturing process that is extremely complex or when updating interior architectural detail. Or, if you are testing a new design against existing conditions scientifically, empirically and visually.

Laser scanning also enables you to return to the jobsite to measure areas that you didn’t think you would need initially, but that are now critical to the project.

These are just a few examples, but you get the point. As a rule, laser scanning should always pay for itself! There are some instances when laser scan data is of lesser value. This is typically the case with less detailed projects where there is less likelihood that a small mis-measurement will cause a major problem.

Examples of when laser scanning is of lesser value include simple earthwork projects, wooded landscapes, and multi-room facilities with the same floor plan.

Other examples of situations in which you probably do not need a laser scan:

  • If you need to run a topographic survey of a wooded lot
  • If you are planning a building that is 100% greenfield
  • If two men can draw and measure it in one day
  • If the structure is very basic (ex: 10 identical hotel rooms, elevations view of a four-sided, two-story structure, or a basic small room)

There are also some extenuating circumstances where laser scanning could add great value. For example:

  • Construction before a concrete pour to document the sub-concrete elements (vents, pipes, conduit).
  • Documentation of an existing condition that could change after construction begins or documenting a historic facility that may be subject to change. (This could include settlement or vibration cracks.)
  • High value projects where the value of future construction is high, the project moderately complicated, and the cost of return trips is expensive. (For oil and gas projects, for example, the price of laser scanning is almost insignificant.)
  • Liability reduction by being able to definitively show flaws in existing conditions were not caused by the new construction. (This could include walls, scientific labs and cracks.)
  • Travel expenses that could be saved by permanently bringing a faraway facility to the designer’s desktop. (Some of our clients work on and in the same point clouds for years from facilities in China, Alaska and Haiti.)

Is a laser scan right for your next project? Contact us today and we’ll help you with everything you need to get started.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

3D Laser Scanning gives law enforcement the upper hand in crime scene investigation and recreation

In October 2011, police responded to a grisly double-murder in Rocky Face, Georgia.

An elderly gentleman and a teenage girl were found dead from gunshot wounds to the head. The scene was even more revolting because the murderer had tried to cover his tracks by setting the house on fire.

What did the Georgia Bureau of Investigation use to document this complicated crime scene? They used 3D laser scanning. According to GBI Special Agent Jerry Scott, “It’s now the best technology available for documenting and recording crime scenes.”

Collecting evidence

3D Laser Scanning is quicker than other types of crime scene documentation and the technology provides much more useful data, making crime scene reconstruction more accurate, reliable, and easier to explain to a jury.

Police generally use the Leica C-10 as their scanner of choice. This instrument can take 84 pictures in about six minutes and measure from up to 200 feet away. With this capability, crime scene documentation can take up to 80% less time.

What does is record? Well, everything.

“Where the cars were, where the debris ended up, where the body was, where the weapon was – anything seen by the scanner, we will have,” said Sgt. Jeff Davis from the Arlington, Texas Police Department to WFAA in Dallas.

3D laser scanning is increasingly finding its home in other police forces across the country.

“It has become a standard part of our initial investigation process,” said Chattanooga Police Sgt. Darrell Whitfield, who was the first Chattanooga police investigator to train with the equipment.

Lieutenant Matt Magro of the Carlsbad, California Police Department told the news in San Diego, “It allows us to recreate the scene very quickly and very accurately. You can click on the bullet hole on the wall and then go to the shell casing and it will tell you what the distance between those objects is and the elevation in just the click of a mouse.”

During the investigation

Once the site is cleaned up or altered in any way, the evidence is spoiled. However, 3D laser scanning allows investigators to return to the site at any time to retrieve missed or forgotten details. Investigators can view vivid color 3D data and extract any measurement they need long after the scene has been released.

At the crime scene, investigators take photographs, make measurements and sketches, and interview witnesses. However, even the most seasoned investigator can miss critical details due to time constraints, site access, or simple knowledge of the facts.

Sgt. Davis noted that having access to the scene as it was days, months, or even years after is extremely valuable. “If something comes up later, then we are able to go back to the scan and extract that information.”

As a case develops, investigators can use the 3D scan to determine which “witnesses” could really see what happened. When a gun is involved, for example, built-in shooting reconstruction tools can zero in on probable shooter locations.

Using the data at trial

3D laser scanning has also become a game-changer in court.

“It gives juries a virtual tour of the crime scene,” said Iredell County, North Carolina Sheriff’s Chief Deputy Rick Dowdle in the Moorsville Tribune.

Traditionally, the jury is shown a series of photographs and two dimensional diagrams of the scene. This requires a great deal of explanation and imagination on the part of the jury.

It is also an answer to what Hamilton County District Attorney Bill Cox calls the “‘CSI effect” among modern jurors, many of whom consume a steady diet of crime and courtroom dramas.

“People watch television and they expect a lot of high-tech video and audio evidence,” Cox said in a recent interview.

As noted by Lt. Warren Hamlin of the Knox County Tennessee Police Department in an interview related to a murder trial in Tennessee, “It’s almost like taking the jury right to the crime scene. We can show pictures all day long, but when you’ve got a panoramic view that shows exactly how it looked and where everything was, that’s a much better depiction than a photograph. So, if a guy says, ‘I was standing in that corner,’ you can create a viewpoint exactly where his head would be and look around the model and tell whether yes, he could see that, or, no, he’s lying.”

The truth is that law enforcement is developing a tool to cut its investigation time and dramatically improve its effectiveness both during the investigation and in court. Defense attorneys had better start catching up.

###

David Headrick has over 20 years of experience in the surveying, engineering and legal industries, both as a project manager for LandAir Surveying and as a lawyer in private practice. He has represented numerous land surveyors, designers, architects, contractors and other industry professionals throughout his career. Today, David serves as an executive and project manager for LandAir, focused on developing and managing the company’s 3D Laser Scanning department. Contact him at dheadrick@lasurveying.com.

 Sources:

Double murder victims shot in the head before suspect set house on fire (located at http://www.wrcbtv.com/story/15499351/north-georgia-double-murder-victims-shot-in-the-head-before?clienttype=printable)

Georgia Bureau of Investigation agents train with 3-D laser scanners in Dalton (located at http://www.timesfreepress.com/news/2012/jan/22/crime-scene-science-gbi-agents-train-with-3-d/)

High-tech scanning system keeps record of scenes for Arlington PD (located at http://www.wfaa.com/news/crime/High-Tech-System–Scanning-Incidents-in-Arlington–171642511.html)

Laser scanning system enables CPD to reproduce 3D crime scene (http://www.timesfreepress.com/news/2011/nov/06/laser-scanning-system-enables-jurors-reproduce-3d-/)

Revolutionizing Crime Documenting Tool (located at http://www.sandiego6.com/news/local/Revolutionizing-Crime-Documenting-Tool-183033771.html)

3D laser scanning revolutionizes construction site accident investigation and evidence collection

In early October 2012, several construction workers were killed or injured when the Miami Dade College parking garage collapsed like a pancake, trapping a then-unknown number of workers inside (See http://tinyurl.com/9956xae). Some survived, but some did not.

Post-accident site investigation

Since this tragic loss of life, injury, and property damage, lawyers have no doubt already begun what will be expensive and lengthy litigation. The owner, architect, engineer, contractor, subcontractors, construction workers and their families will all play a part.

The evidence may be sifted and sorted for years before any judges or juries hear about what happened on that fateful day.

Ideally, each party would have ample opportunity to investigate the site, take measurements, and form opinions as to what happened. However, this was not an option in Miami.

Workers needed to be freed. The structure’s potential for further collapse endangered all those around it. The owner had a dangerous pile of rubble where a new parking garage was supposed to stand. Certainly, nobody wanted to preserve site conditions for any length of time.

So, how can evidence of existing site conditions be preserved forever? 3D laser scanners were dispatched to the site immediately.

From onsite scan to a 3D model on your computer

Similar to traditional surveying, 3D laser scanners are set-up on tripods and use light to precisely measure their surroundings. But whereas traditional land surveying instruments take only one measurement at a time and need a reflector to return the light, 3D laser scanners take millions of measurements of everything that they can “see”  within 300 feet.

This data is collected in a matter of minutes and the instrument can be set up as many times as necessary to see the entire site. Technicians then convert this raw information into a 3D model.

Lawyers and their experts can use this model to return to the day of the accident at any time.  They can pan and zoom around the model to find any desired vantage point. Any angle or distance can be measured and re-measured.

Collecting quality evidence

After any given construction accident, investigators take photographs, make measurements and sketches, and interview witnesses.  However, even the most seasoned investigator can miss critical details due to time constraints, site access, or simple knowledge of the facts.

Once the site is cleaned up or altered in any way, the evidence is spoiled. However, 3D laser scanning allows investigators to return to the site at any time to retrieve missed or forgotten details.

Additionally, the evidentiary quality of 3D laser scanning data far outweighs traditionally collected evidence. Photographs provide only a single 2D perspective and each detail must be specifically targeted. Manual measurements are subject to observational and recording error.  Witnesses certainly cannot permanently remember every visible detail, especially in the wake of a tragedy. 3D laser scanning overcomes all of these limitations.

Full access to the site is often limited, for example, from the danger of additional collapse and loose rubble around the parking garage in Miami. This problem is also overcome with 3D laser scanning, as it uses light to measure from a distance. Anything that can be seen can be scanned and recorded for later review.

Using the model at trial

3D laser scans are not new to the courtroom and readily pass muster under evidentiary challenges. Foundation for entering a 3D laser scan on the record can be laid by a professional land surveyor, but courts nationally have allowed scans based on the testimony of laymen who were simply certified to use the equipment.

At trial, 3D laser scans provide unparalleled demonstrative exhibits. Judges and juries will no longer need to travel to visit a site.

As noted by Lt. Warren Hamlin of the Knox County Tennessee Police Department, “It’s almost like taking the jury right to the crime scene. We can show pictures all day long, but when you’ve got a panoramic view that shows exactly how it looked and where everything was, that’s a much better depiction than a photograph. … So, if a guy says, ‘I was standing in that corner,’ you could create a viewpoint exactly where his head would be and look around the model and tell whether, yes, he could see that, or, no, he’s lying.”

###

David Headrick has over 14 years of experience in the surveying, engineering and legal industries, both as a project manager for LandAir Surveying and as a lawyer in private practice. He has represented numerous land surveyors, designers, architects, contractors and other industry professionals throughout his career. Today, David serves as an executive and project manager for LandAir, focused on developing and managing the company’s 3D laser scanning department. Contact him at dheadrick@lasurveying.com.

 

 

 

An armed robbery, a high speed police chase and…laser scanning?

Sometimes I don’t have to look past the front page of the local newspaper to see a good example of laser scanning in action.

Tragically, there was a police-involved shooting in Cobb County, Georgia, this past weekend, as reported by the Atlanta Journal-Constitution. The suspect allegedly robbed a gas station and then led the police on a high speed chase. The chase ended on I-75 when the suspect pointed a weapon at the police officers and was shot dead.

This was a very unfortunate incident, but the impact on the community was far lessoned due to the outstanding work of the Georgia Bureau of Investigation.

The shooting and subsequent chase left many cars wrecked and damaged and, ultimately, the interstate was forced to close temporarily. As you can imagine, this was not a calm situation.

The GBI dispatched their laser scanning team to the site to set-up and scan the area to document the evidence both known and unknown at the time. They also generated 3D photography to further document the area in its entirety.

Using this method, they not only saved time, but were also able to quickly collect the data that would be necessary if the case were to go to trial.

So why use laser scanning to document a scene like this?

First, consider the sheer size of the scene. In this case, the area of study was larger than a football field. Without scanning, investigators would have had to take multiple photographs and make measurements with total stations that shoot one point at a time or worse, measure with 100 foot-long measuring tapes.

This takes much more time, requires more people, and creates much more chance for errors. The errors could be wrong measurements or even missed objects.

When you combine the laser point cloud data with the photographic data, the measurements and the scene become much more intuitive and obvious. You can place the evidence markers by the evidence within the scene and the scanner automatically picks them up.

Instead of making and recording many different angles and distances, you simple put in the points per square foot you want to capture into the scanner and in about 15 minutes, you have a completed scan with photography.

You can look at the scan and very clearly see the markers and measure from any object in the scan to any other object in the scan. So, if you need to know how long a skid mark is, for example, you would just click two points – one at the beginning and one at the end – and the measurement would be instantly generated.

With laser scanning, time at the scene is used to locate and mark the evidence and important points in the scene. All critical measurements can be made offsite after the scene is moved and the traffic is moving again.

Here’s the most important part: If you need information about the scene, but did not know it at the time of the scan, all is not lost! If it exists in the scan, you can make all the measurements you need to document the new (previously unknown) evidence.

More and more, laser scanners are being used to document crime scenes across the country. District attorneys like the scanned data because they can easily view it.

Scanned data is totally objective in that it collects the whole scene. It is easy to put a point down on the ground every square inch so that the coverage of the site is complete. Additionally, the fact that no one has to decide what measurements are made in the field before they release traffic is very important.

Judges like the data because the jury does not have to visit the site to understand the scene. Instead, they can simply view it in 3D on a computer screen without leaving the courtroom.

Laser scanning also saves time and money. Traffic still has to be stopped for an investigation, but if not for laser scanners, it would be stopped longer and there would be less information collected.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

Hacked By Shade

Hacked By Shade

Hacked By Shade

 

GreetZ : Prosox & Sxtz

Hacked By Shade <3