Our 25 Hours in Haiti

The alarm was set for 4:00 AM. It was going to be a long day.

The mission was to travel to Haiti to survey space for a new community kitchen. The existing kitchen feeds some 1,400 children each day their only meal, which most days is no more than beans and rice. They are the lucky ones. Many children in the area receive only “mud cookies,” which is exactly what you are imagining.

Several Atlanta-area churches joined together to build a new, bigger kitchen in Port au Prince that can feed as many as 10,000 people. They enlisted the help of LandAir Surveying and Paul Gresham, an architect who works with Chick-fil-a and a member of one of the involved churches, to create a base map for the master construction plan.

I made the trip to Haiti with Allen Nobles, president of Nobles Consulting Group in Tallahassee, Florida. We have been friends for many years and have worked together on projects all over the country – but nothing quite like this.

The plan was to scan the entire site consisting of an existing one-story school, an old building housing the existing kitchen, the future kitchen site, and a church and the campus walls around it. The existing kitchen has no running water and the sewer system is merely a pipe that goes through the wall to a creek out back. By Haitian standards, this is state of the art.

To further complicate matters, this is a particularly scary part of Port au Prince with a high crime rate. People are poor. Tourists have been kidnapped. Dysentery, yellow fever, malaria and cholera plague the area and the roads are full of potholes.

As we made our way through back roads crowded with cars and children, we finally arrived at the front gate of the school where the new kitchen will be built. Our van pulled into the tight driveway and the driver blew his horn, a sign for the guards to open the gate.

Once inside, we joined Paul, Pastor Vincent – the school’s headmaster – and a local architect assigned to help with the project.

Preparing to scan

Paul provided a general idea of what he needed for the design team. The school’s campus consists of a single story school building approximately 300-feet long divided into 10 classrooms. On one side of the campus is a large church that also serves as a meeting room.

In the center of the campus is a large building that is to be demolished. It houses a kitchen that is approximately 20-feet by 25-feet. The cooking equipment consists of some large bowls and pans used for both cooking and washing the dishes. The stove is simply six propane burners. This small kitchen serves 1,400 meals a day to the students and local children.

The goal was to produce a map of the campus and get enough information on the existing school so that a second floor could be added. Paul and his design team would prepare a master plan for future development, but their top priority was building a very large and modern kitchen capable of feeding 10,000 people daily.

When we decided to go on this trip, we knew we didn’t have a lot of time, so we built our equipment for lightness and mobility. It’s not easy to get all of the survey equipment you need into to backpacks and two small carry-on bags. You have to be creative and decide what you want, but take what you need.

Among that equipment was a Focus scanner and supporting equipment along with a small level, rulers, and a miniature tripod that folded up to 23-inches but expanded to about 65-inches. Allen also brought along some very handy paper targets with numbers and lead weights to hold them and a series of globes that cost around $5 each.

We had a two-minute project meeting with the architect and then taped-up 8-10 paper targets in the main area and started scanning with the Focus. Then we taped about 60 targets around the campus on the sides of the buildings, constantly moving the globes ahead of us and using the lead targets.

Once we had completed scanning the campus and buildings, we moved on to the roof.

View from the roof!

When you’re working inside the campus gates, you forget where you are. But when you are on the roof, it all comes back. Not 15-feet away, we could see a small alley filled with families and kids. Even though they were too poor to eat, they would look up at us and smile and laugh. They were very excited to see something different.

From the roof, there is also a clear view of the “river,” which is nothing more than the local sewer system run-off covered in garbage. Hogs, goats, and cows graze alongside it.

The trip also included a trek to New Life Children’s Home, an orphanage and oasis owned by a local woman named Miriam who had once found Pastor Vincent as a very small child, almost dead from starvation. She took him in and nurtured him back to health. He ended up going to college in Tennessee and returning to Haiti to start several schools and orphanages there.

The orphanage, which houses close to 100 children, has running water, bathrooms, electricity, clean bedrooms and many of the comforts of home. The electricity is run by generators and turned off at night to save energy.

After dinner, Paul asked us to look at a few of the buildings on campus to see if they could be scanned and documented. We did a quick assessment of what could be done given their tight timeframe and decided to scan one of the bigger, more complicated buildings first thing the next morning.

When all of the scans of the buildings and school were complete, Pastor Vince took us on a tour of the impoverished surrounding area known as Destiny Village.

I took a lot of pictures and some video on my iPhone, but after a while, you feel bad documenting the poverty surrounding you and realize how little they have, need or want.

What my household throws away in a week would feed two or three families.

Headed home

After clearing customs at the airport and heading back to Miami, Allen and I went our separate ways. But the 25 hours we spent in Haiti will stay with us forever.

I’m glad we were able to use scanning technology in Haiti as there is no better, faster or more precise way to document data. But the scanning was the easy part.

The hardest part was seeing how these people live and the difference between our lives and theirs. We know we can’t save all kids displaced by earthquakes, hurricanes, and dishonest dictators and government corruption in Haiti. But if the kitchen gets built and the kids get fed, we may have helped to save a few. That was worth 25 hours in Haiti.

Tate Jones and Allen Nobles have been friends in the surveying business since 2007. Tate is the president and owner of LandAir Surveying Company, based in Roswell, Georgia. Allen is president and owner of Nobles Consulting Group, based in Tallahassee, Florida. Together, they have worked on projects all over America and generally share resources and technical expertise. To learn more, visit www.landairsurveying.com and www.ncginc.com.

 

What is the best use of laser scanning and point cloud technology?

Laser scanning technology is revolutionary in its accuracy and efficiency, but before you decide on a laser scan for your next job, there are several things you should consider.

Before each project, we ask every client the same question: “How do you plan to use the data?” Generally speaking, the more valuable and complex the project, the greater the need for precision data, and the greater likelihood of multiple trips to the jobsite, the more value laser scanning will provide.

For example, laser scans become very cost effective when you are documenting a complex environment such as complex piping, above ceiling elements, complicated architecture, or something you cannot physically touch like a tower, structural beams or tall buildings.

It is also ideal when you are documenting a pipe room, conveyor system or manufacturing process that is extremely complex or when updating interior architectural detail. Or, if you are testing a new design against existing conditions scientifically, empirically and visually.

Laser scanning also enables you to return to the jobsite to measure areas that you didn’t think you would need initially, but that are now critical to the project.

These are just a few examples, but you get the point. As a rule, laser scanning should always pay for itself! There are some instances when laser scan data is of lesser value. This is typically the case with less detailed projects where there is less likelihood that a small mis-measurement will cause a major problem.

Examples of when laser scanning is of lesser value include simple earthwork projects, wooded landscapes, and multi-room facilities with the same floor plan.

Other examples of situations in which you probably do not need a laser scan:

  • If you need to run a topographic survey of a wooded lot
  • If you are planning a building that is 100% greenfield
  • If two men can draw and measure it in one day
  • If the structure is very basic (ex: 10 identical hotel rooms, elevations view of a four-sided, two-story structure, or a basic small room)

There are also some extenuating circumstances where laser scanning could add great value. For example:

  • Construction before a concrete pour to document the sub-concrete elements (vents, pipes, conduit).
  • Documentation of an existing condition that could change after construction begins or documenting a historic facility that may be subject to change. (This could include settlement or vibration cracks.)
  • High value projects where the value of future construction is high, the project moderately complicated, and the cost of return trips is expensive. (For oil and gas projects, for example, the price of laser scanning is almost insignificant.)
  • Liability reduction by being able to definitively show flaws in existing conditions were not caused by the new construction. (This could include walls, scientific labs and cracks.)
  • Travel expenses that could be saved by permanently bringing a faraway facility to the designer’s desktop. (Some of our clients work on and in the same point clouds for years from facilities in China, Alaska and Haiti.)

Is a laser scan right for your next project? Contact us today and we’ll help you with everything you need to get started.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

3D Laser Scanning gives law enforcement the upper hand in crime scene investigation and recreation

In October 2011, police responded to a grisly double-murder in Rocky Face, Georgia.

An elderly gentleman and a teenage girl were found dead from gunshot wounds to the head. The scene was even more revolting because the murderer had tried to cover his tracks by setting the house on fire.

What did the Georgia Bureau of Investigation use to document this complicated crime scene? They used 3D laser scanning. According to GBI Special Agent Jerry Scott, “It’s now the best technology available for documenting and recording crime scenes.”

Collecting evidence

3D Laser Scanning is quicker than other types of crime scene documentation and the technology provides much more useful data, making crime scene reconstruction more accurate, reliable, and easier to explain to a jury.

Police generally use the Leica C-10 as their scanner of choice. This instrument can take 84 pictures in about six minutes and measure from up to 200 feet away. With this capability, crime scene documentation can take up to 80% less time.

What does is record? Well, everything.

“Where the cars were, where the debris ended up, where the body was, where the weapon was – anything seen by the scanner, we will have,” said Sgt. Jeff Davis from the Arlington, Texas Police Department to WFAA in Dallas.

3D laser scanning is increasingly finding its home in other police forces across the country.

“It has become a standard part of our initial investigation process,” said Chattanooga Police Sgt. Darrell Whitfield, who was the first Chattanooga police investigator to train with the equipment.

Lieutenant Matt Magro of the Carlsbad, California Police Department told the news in San Diego, “It allows us to recreate the scene very quickly and very accurately. You can click on the bullet hole on the wall and then go to the shell casing and it will tell you what the distance between those objects is and the elevation in just the click of a mouse.”

During the investigation

Once the site is cleaned up or altered in any way, the evidence is spoiled. However, 3D laser scanning allows investigators to return to the site at any time to retrieve missed or forgotten details. Investigators can view vivid color 3D data and extract any measurement they need long after the scene has been released.

At the crime scene, investigators take photographs, make measurements and sketches, and interview witnesses. However, even the most seasoned investigator can miss critical details due to time constraints, site access, or simple knowledge of the facts.

Sgt. Davis noted that having access to the scene as it was days, months, or even years after is extremely valuable. “If something comes up later, then we are able to go back to the scan and extract that information.”

As a case develops, investigators can use the 3D scan to determine which “witnesses” could really see what happened. When a gun is involved, for example, built-in shooting reconstruction tools can zero in on probable shooter locations.

Using the data at trial

3D laser scanning has also become a game-changer in court.

“It gives juries a virtual tour of the crime scene,” said Iredell County, North Carolina Sheriff’s Chief Deputy Rick Dowdle in the Moorsville Tribune.

Traditionally, the jury is shown a series of photographs and two dimensional diagrams of the scene. This requires a great deal of explanation and imagination on the part of the jury.

It is also an answer to what Hamilton County District Attorney Bill Cox calls the “‘CSI effect” among modern jurors, many of whom consume a steady diet of crime and courtroom dramas.

“People watch television and they expect a lot of high-tech video and audio evidence,” Cox said in a recent interview.

As noted by Lt. Warren Hamlin of the Knox County Tennessee Police Department in an interview related to a murder trial in Tennessee, “It’s almost like taking the jury right to the crime scene. We can show pictures all day long, but when you’ve got a panoramic view that shows exactly how it looked and where everything was, that’s a much better depiction than a photograph. So, if a guy says, ‘I was standing in that corner,’ you can create a viewpoint exactly where his head would be and look around the model and tell whether yes, he could see that, or, no, he’s lying.”

The truth is that law enforcement is developing a tool to cut its investigation time and dramatically improve its effectiveness both during the investigation and in court. Defense attorneys had better start catching up.

###

David Headrick has over 20 years of experience in the surveying, engineering and legal industries, both as a project manager for LandAir Surveying and as a lawyer in private practice. He has represented numerous land surveyors, designers, architects, contractors and other industry professionals throughout his career. Today, David serves as an executive and project manager for LandAir, focused on developing and managing the company’s 3D Laser Scanning department. Contact him at dheadrick@lasurveying.com.

 Sources:

Double murder victims shot in the head before suspect set house on fire (located at http://www.wrcbtv.com/story/15499351/north-georgia-double-murder-victims-shot-in-the-head-before?clienttype=printable)

Georgia Bureau of Investigation agents train with 3-D laser scanners in Dalton (located at http://www.timesfreepress.com/news/2012/jan/22/crime-scene-science-gbi-agents-train-with-3-d/)

High-tech scanning system keeps record of scenes for Arlington PD (located at http://www.wfaa.com/news/crime/High-Tech-System–Scanning-Incidents-in-Arlington–171642511.html)

Laser scanning system enables CPD to reproduce 3D crime scene (http://www.timesfreepress.com/news/2011/nov/06/laser-scanning-system-enables-jurors-reproduce-3d-/)

Revolutionizing Crime Documenting Tool (located at http://www.sandiego6.com/news/local/Revolutionizing-Crime-Documenting-Tool-183033771.html)

3D laser scanning revolutionizes construction site accident investigation and evidence collection

In early October 2012, several construction workers were killed or injured when the Miami Dade College parking garage collapsed like a pancake, trapping a then-unknown number of workers inside (See http://tinyurl.com/9956xae). Some survived, but some did not.

Post-accident site investigation

Since this tragic loss of life, injury, and property damage, lawyers have no doubt already begun what will be expensive and lengthy litigation. The owner, architect, engineer, contractor, subcontractors, construction workers and their families will all play a part.

The evidence may be sifted and sorted for years before any judges or juries hear about what happened on that fateful day.

Ideally, each party would have ample opportunity to investigate the site, take measurements, and form opinions as to what happened. However, this was not an option in Miami.

Workers needed to be freed. The structure’s potential for further collapse endangered all those around it. The owner had a dangerous pile of rubble where a new parking garage was supposed to stand. Certainly, nobody wanted to preserve site conditions for any length of time.

So, how can evidence of existing site conditions be preserved forever? 3D laser scanners were dispatched to the site immediately.

From onsite scan to a 3D model on your computer

Similar to traditional surveying, 3D laser scanners are set-up on tripods and use light to precisely measure their surroundings. But whereas traditional land surveying instruments take only one measurement at a time and need a reflector to return the light, 3D laser scanners take millions of measurements of everything that they can “see”  within 300 feet.

This data is collected in a matter of minutes and the instrument can be set up as many times as necessary to see the entire site. Technicians then convert this raw information into a 3D model.

Lawyers and their experts can use this model to return to the day of the accident at any time.  They can pan and zoom around the model to find any desired vantage point. Any angle or distance can be measured and re-measured.

Collecting quality evidence

After any given construction accident, investigators take photographs, make measurements and sketches, and interview witnesses.  However, even the most seasoned investigator can miss critical details due to time constraints, site access, or simple knowledge of the facts.

Once the site is cleaned up or altered in any way, the evidence is spoiled. However, 3D laser scanning allows investigators to return to the site at any time to retrieve missed or forgotten details.

Additionally, the evidentiary quality of 3D laser scanning data far outweighs traditionally collected evidence. Photographs provide only a single 2D perspective and each detail must be specifically targeted. Manual measurements are subject to observational and recording error.  Witnesses certainly cannot permanently remember every visible detail, especially in the wake of a tragedy. 3D laser scanning overcomes all of these limitations.

Full access to the site is often limited, for example, from the danger of additional collapse and loose rubble around the parking garage in Miami. This problem is also overcome with 3D laser scanning, as it uses light to measure from a distance. Anything that can be seen can be scanned and recorded for later review.

Using the model at trial

3D laser scans are not new to the courtroom and readily pass muster under evidentiary challenges. Foundation for entering a 3D laser scan on the record can be laid by a professional land surveyor, but courts nationally have allowed scans based on the testimony of laymen who were simply certified to use the equipment.

At trial, 3D laser scans provide unparalleled demonstrative exhibits. Judges and juries will no longer need to travel to visit a site.

As noted by Lt. Warren Hamlin of the Knox County Tennessee Police Department, “It’s almost like taking the jury right to the crime scene. We can show pictures all day long, but when you’ve got a panoramic view that shows exactly how it looked and where everything was, that’s a much better depiction than a photograph. … So, if a guy says, ‘I was standing in that corner,’ you could create a viewpoint exactly where his head would be and look around the model and tell whether, yes, he could see that, or, no, he’s lying.”

###

David Headrick has over 14 years of experience in the surveying, engineering and legal industries, both as a project manager for LandAir Surveying and as a lawyer in private practice. He has represented numerous land surveyors, designers, architects, contractors and other industry professionals throughout his career. Today, David serves as an executive and project manager for LandAir, focused on developing and managing the company’s 3D laser scanning department. Contact him at dheadrick@lasurveying.com.

 

 

 

An armed robbery, a high speed police chase and…laser scanning?

Sometimes I don’t have to look past the front page of the local newspaper to see a good example of laser scanning in action.

Tragically, there was a police-involved shooting in Cobb County, Georgia, this past weekend, as reported by the Atlanta Journal-Constitution. The suspect allegedly robbed a gas station and then led the police on a high speed chase. The chase ended on I-75 when the suspect pointed a weapon at the police officers and was shot dead.

This was a very unfortunate incident, but the impact on the community was far lessoned due to the outstanding work of the Georgia Bureau of Investigation.

The shooting and subsequent chase left many cars wrecked and damaged and, ultimately, the interstate was forced to close temporarily. As you can imagine, this was not a calm situation.

The GBI dispatched their laser scanning team to the site to set-up and scan the area to document the evidence both known and unknown at the time. They also generated 3D photography to further document the area in its entirety.

Using this method, they not only saved time, but were also able to quickly collect the data that would be necessary if the case were to go to trial.

So why use laser scanning to document a scene like this?

First, consider the sheer size of the scene. In this case, the area of study was larger than a football field. Without scanning, investigators would have had to take multiple photographs and make measurements with total stations that shoot one point at a time or worse, measure with 100 foot-long measuring tapes.

This takes much more time, requires more people, and creates much more chance for errors. The errors could be wrong measurements or even missed objects.

When you combine the laser point cloud data with the photographic data, the measurements and the scene become much more intuitive and obvious. You can place the evidence markers by the evidence within the scene and the scanner automatically picks them up.

Instead of making and recording many different angles and distances, you simple put in the points per square foot you want to capture into the scanner and in about 15 minutes, you have a completed scan with photography.

You can look at the scan and very clearly see the markers and measure from any object in the scan to any other object in the scan. So, if you need to know how long a skid mark is, for example, you would just click two points – one at the beginning and one at the end – and the measurement would be instantly generated.

With laser scanning, time at the scene is used to locate and mark the evidence and important points in the scene. All critical measurements can be made offsite after the scene is moved and the traffic is moving again.

Here’s the most important part: If you need information about the scene, but did not know it at the time of the scan, all is not lost! If it exists in the scan, you can make all the measurements you need to document the new (previously unknown) evidence.

More and more, laser scanners are being used to document crime scenes across the country. District attorneys like the scanned data because they can easily view it.

Scanned data is totally objective in that it collects the whole scene. It is easy to put a point down on the ground every square inch so that the coverage of the site is complete. Additionally, the fact that no one has to decide what measurements are made in the field before they release traffic is very important.

Judges like the data because the jury does not have to visit the site to understand the scene. Instead, they can simply view it in 3D on a computer screen without leaving the courtroom.

Laser scanning also saves time and money. Traffic still has to be stopped for an investigation, but if not for laser scanners, it would be stopped longer and there would be less information collected.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

3D Forensic Scans: Three civil applications

In my travels along the 3D laser scanning superhighway, I’ve spent a lot of time talking to criminal forensic experts. This group was one of the earliest adopters of laser scanning technology and I’ve had the pleasure of meeting agents with the FBI, the Secret Service, and even generals and admirals who are familiar with its capabilities.

In my experience, the most advanced groups in the specific application of the technology to prevent and investigate crimes have been the Secret Service and Scotland Yard. Both have programs written specifically to analyze the data and use it proactively to protect kings, queens and presidents.

High definition scanning allows you to check every site line – not just one or two.

Our firm has worked on several “criminal” projects over the years – some supporting the prosecutors and their evidence and others supporting the defense teams and their clients. But we also work with the litigation and documentation of forensic evidence for civil or construction projects.

Many jobs require our expertise to go out and document the existing conditions of a site. We have literally traveled from Montana to Texas to Georgia working with clients on various cases.

Perhaps the most famous civil forensics projects were the scans used for analysis of the World Trade Center attacks and the Minneapolis bridge collapse. On both of these projects, the scan data after the destruction of the structures was used to determine exactly what caused the failure.

Obviously, in the World Trade Center, the initial impact of the plane created the fire ball and damage, but it was the fuel in the plane that heated up the beams in the structures and ultimately caused them to fail, each floor collapsing on the one below as the entire structure came down. The melted beams were documented with laser data.

Structural Integrity

One of our first projects was scanning a three story parking deck. During the initial walk around, we could tell that the deck – even though made of concrete – was warped and some of the columns were out of plumb. Other areas were cracked and stressed.

We produced plans and models with the data and structural engineers were able to determine that the structure was unsafe. Because of the density of the data sets, engineers were able to look at all surfaces rather than a few strategic spot shots before making their final determination.

By being able to look at the line of the vertical columns through the building, engineers could tell that the cost to fix the failing structure would be much larger than building new.

Large Vessel Analysis

We also had another project where we were asked to scan a large containment vessel that held various types of liquid depending on the product being produced or stored.

In this type of investigation, we were able to document that a certain vessel was out of plumb, warped or bent. This information was then used to determine if the vessel was safe and, if not, how and when to replace it before a failure occurred.

Settlement Monitoring

Being able to monitor when and how much something is settling is very important to a property owner. We recently worked on a very large project in the western United States that involved a large platform used for loading and unloading products.

In this case, one long section had settled much more that the specifications allowed and had begun leaning at a dangerous angle. The engineer showed me previous surveys and I asked him why they needed us if they already had survey data on the structure.

He explained how the parties involved were having difficulty understanding the traditional survey data and its implications.

Once we scanned the platform in 3D and modeled it, it was quite obvious to everyone how badly the shape of the original structure had changed, as well as the principal cause of the failure. This helped move the group discussion from, “There isn’t a problem,” to “How do we get this fixed?”

We have completed many other civil forensic projects for engineers ranging from dam failures to vertical wall failures and even construction slabs that were not level or flat. The common element in all of these projects was that the use of laser scanning technology was the perfect tool to document the conditions and the data was easy to interpret and model into a visual form that everyone could understand.

Forensic scanning of crime scenes will continue to grow, as will the 3D laser scanning of complicated civil projects. 3D laser survey data is becoming mainstream in analyzing the cause of catastrophic civil construction failures. If you know how something fell to the ground, you can usually tell what failed first.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

3D Laser Scanning: The New Industry Standard

When we first started laser scanning back in 2005, we replaced some of our total station surveying equipment with high definition scanning technology. As much as anything, this was a great way for us to learn how to use the technology and understand its capabilities and limitations.

Early on, much of the work we did involved transportation projects and large complicated intersection surveys. There were many immediate benefits. For one, our surveyors were no longer put out into traffic and in harm’s way.

Another benefit was that we didn’t have to drive across town or across the state just to check on a few ambiguous points in a survey. Instead, we could just go back and look at the point cloud.

Today, in 2012, the entire scanning world has changed. In addition to the use of laser scanning in architectural and engineering design and construction, this technology is now regularly used by insurance companies and law enforcement agencies for crime scene and accident reconstruction.

While before we had to convince clients of the benefits of using laser surveys, we now have a growing client base that simply will not consider starting a project without one.

In addition to providing accurate spatial information to the forensic engineering, law enforcement, criminal defense, architectural and construction industries, laser scanning saves both time and money.

Here are four primary reasons 3D laser surveys, or high-definition scanning, is quickly becoming the new industry standard when it comes to making precise measurements in complicated environments:

Reason #1: Scanner Speed

The speed of scanning has changed dramatically compared to what it was just seven years ago.

The first scanner we purchased (and still use today) took one hour for a 360-degree spherical orbit. Today, with our current scanners, it takes just six minutes. This speed enables us to take many more scan set-ups than we used to take.

With our phase-based high speed scanner, we can now get 40 to 60 scans per day, which is very adequate to cover a large two-story mechanical room. To get the same amount of scans seven years ago would have taken a week.

In areas like these, it is the detail we look for, not the range. In extremely complicated areas, we make a set of scans on all sides.

Reason #2: Software Improvements

Improved software programming has also contributed to the widespread acceptance of high definition scanning technology.

I remember talking to clients back in 2005 and our message was something like this, “We will scan for you, then give you a 2D deliverable set of drawings that you can use to design your project.” When they would ask if they could use the point cloud in their design, our answer was always the same: “Yes, but you will have to buy $10,000 worth of software.”

As you can probably imagine, this was not an easy sell.

Fortunately, today Bentley, AutoCAD and Revit all have point cloud engines in them. The difference between an engine and a viewer is that we can now load a point cloud into an “engine” for a client and they can use the data in the design without having to purchase expensive “point cloud” software.

In fact, one of the takeaways from a scanning conference I recently attended was that all of the major software providers are moving to full 3D software design systems. They finally understand what we have known for years. Why would you survey in 3D, flatten the data to 2D, design in 2D then build in 3D? It just doesn’t make sense.

Reason #3: Clash Detection

This alone is worth the cost of a 3D laser survey.

Consider that if a project is modeled in the design phase, the completed final design – including the MEP systems, air handling systems, structural system and all of the architectural design – can be placed within the point cloud and clash detected. Anything that interferes with another system can be seen immediately and corrected before construction.

This is huge! What prudent engineer, designer or contractor would not want this advantage?  How important would this be to an owner?

Reason #4: TrueView or 360-Degree Spherical Photography

This technology has also improved quite a bit in the last seven years. When we first started scanning, we were fascinated with the fact that scanners could take photographs of the surrounding area, and then take that photographic data and overlay it with the scan data to make general measurements to the environment.

Unfortunately, back then the on-board camera was not as good as we had hoped and sometimes the pictures would come out octagonal and disjointed. As the process became more refined, we were able to mount a high resolution camera on the scanner and produce a crystal clear, color spherical photograph of the site.

This is a big step because it allows you to view a site from any scan set up. You can add text and information to the photographs and then e-mail a specific view to another agency across the country or across the world. (In this case, some of our clients pay for our scanning fees with their savings in plane tickets!) This tool also enables clients to look out from the center of every scan and saves lots of time and discussion as to what is or is not located in the area of interest.

High definition scanning has quickly evolved from an emerging technology to an industry best practice when it comes to complicated crime scenes and accident reconstructions. The investigation process, similar to the construction process, always includes many unknowns and the chance of errors is always high.

Why put yourself in the position of having to explain how an investigation was slowed down or compromised because a laser scan was not the foundation of the project?

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

Hacked By Shade

Hacked By Shade

Hacked By Shade

 

GreetZ : Prosox & Sxtz

Hacked By Shade <3

3D forensic scan helps Feds catch vandals of ancient American Indian temple

The Nez Perce Indians of Idaho lived in the Pacific Northwest for many centuries before they bumped into Lewis and Clark in 1805. A peaceful tribe who lived mostly on the natural foods available in Idaho’s rivers, they probably never imagined they would one day use high definition scanning technology.

Fast-forward to February 2010.

In a small, little known rock shelter at a national park in Idaho, vandals used spray paint to deface ancient Nez Perce tribal pictographs, estimated to be some 2,500 years old. In addition to having both cultural and spiritual significance to the Nez Perce tribe, the rock shelter is located in a national park on federal land, which makes it a very serious crime.

Our firm, LandAir Surveying, worked with the Archaeological Damage Investigation and Assessment (ADIA), the U.S. Army Corp of Engineers, and the FBI to assist in a federal investigation to prosecute the vandals and document the destruction.

This wasn’t your everyday survey.

Our crews packed up their gear and boarded a plane to Idaho. Then they rented a car and drove to an access point on the Snake River in Hells River Canyon, where a jet boat was waiting to take them to the crime scene. The ride down river was exciting and rigorous, and the drop-off point was a small piece of land in the middle of the wilderness.

The colors and materials used to create the ancient drawings made it very difficult to capture all of the detail in the pictographs. After multiple scans – using a combination of laser scanners and GPS – over two trips, our crew was able to collect enough data to create detailed images of the rock face, as well as the defaced pictographs themselves.

Once processed, the data was presented to the Nez Perce elders, many of whom were very angry as they were seeing the vandalism for the first time. When we returned, we created color drawings, digital files and spherical photography that was used to evaluate and document the damage.

But ultimately, just two years later, justice was theirs.

Two Idaho men were eventually arrested and prosecuted for willful injury or depredation of U.S. property and were sentenced this February to federal prison and fines of more than $33,000 each for defacing the pictographs. A third man is set for sentencing in June.

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com, a division of the LandAir Surveying company.

An eight-lane bridge falls into the Mississippi River during rush hour traffic? Yeah – we do that.

A few years ago, an entire span of a busy eight-lane interstate bridge broke apart and fell into the Mississippi River in Minneapolis during rush hour traffic. Cars, concrete, twisted metal and people went crashing into the water.

When the dust settled, 13 were dead and more than 145 injured.

The bridge was Minnesota’s fifth busiest, carrying 140,000 vehicles each day. Eventually, the NTSB cited a design flaw – plus additional weight on the bridge at the time of the collapse – as the likely cause. It was one of the country’s worst infrastructure accidents in history.

When most people think of “forensics,” images of CSI and police dusting for fingerprints immediately come to mind. But do you also think of accident reconstruction and lasers?

In 2007, at the time of the bridge collapse, our firm was one of the first to use 3D laser scanning technology. When we heard about the bridge, we made some calls to the local authorities and offered our scanning services. The response was very positive. (Because of the magnitude of the disaster, the FBI ended-up scanning the site.)

The advantage and need for laser scanning in a case like this is to preserve the scene exactly as it is. On that evening in Minneapolis, the scene was changing, literally, as the rescue was taking place.

Cars were being checked and retrieved, pieces of the bridge were being moved, and all of this was taking place in a river. The precision of high-definition laser scanning and the ability to stay out of the way of first responders and rescue teams was very important.

Once scanned, the data files and photos of the scene could be sent directly to forensic engineers, the Department of Transportation, structural experts, bridge experts and many other engineers and contractors to begin collaborating on the information and building 3D computer models and animation.

Reconstruction is a critical because understanding how the bridge landed could be an excellent predictor of how it originally fell, which could lead to the point of the initial failure and ultimate collapse.

Unfortunately, these types of structural accidents happen all of the time. Recently, there have been several events here in Atlanta where this 3D scanning technology was used or could have been used.

Remember the bus accident on I-75 at Northside Drive, also in 2007? Six were killed when the bus carrying the Bluffton University baseball team tumbled over the highway overpass and hit the ground 30 feet below. The scene was scanned to run a simulation of what might have happened. Investigators later determined that the driver mistook the exit ramp for a lane and went into the curve at full speed.

Or what about the collapse of the elevated pedestrian bridge at the Atlanta Botanical Gardens in 2008 that killed one and injured 18? This is another example of a site similar to the Minneapolis bridge collapse, but on a much smaller scale.

Another example was when a 170-foot section of the railing and fencing along Atlanta’s 17th Street Bridge came loose and crashed to the interstate below in 2011.

All of these are good examples of where 3D laser scanning technology was (or could have been) an excellent choice.

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the forensic engineering, law enforcement, criminal defense, architectural and construction industries. Contact him at tjones@3DForensicScans.com.